コンテンツにスキップ

P108 第4章 章末問題11(2).

問題11(2)

 次の等式を証明せよ.

xa2a3an1a1xa3an1a1a2xan1a1a2a3x1a1a2a3an1=i=1n(xai)\begin{vmatrix} x & a_2 & a_3 & \cdots & a_n & 1 \\ a_1 & x & a_3 & \cdots & a_n & 1 \\ a_1 & a_2 & x & \cdots & a_n & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n & 1 \\ \end{vmatrix} = \prod_{i=1}^{n}(x-a_i)
xa2a3an1a1xa3an1a1a2xan1a1a2a3x1a1a2a3an1=xa100000xa200000xa300000xan0a1a2a3an1=(1)2n+2xa10000xa20000xa30000xan=i=1n(xai)\begin{align} \begin{vmatrix} x & a_2 & a_3 & \cdots & a_n & 1 \\ a_1 & x & a_3 & \cdots & a_n & 1 \\ a_1 & a_2 & x & \cdots & a_n & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n & 1 \\ \end{vmatrix} &= \begin{vmatrix} x-a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & x-a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & x-a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x-a_n & 0 \\ a_1 & a_2 & a_3 & \cdots & a_n & 1 \\ \end{vmatrix} \\ &= (-1)^{2n+2} \begin{vmatrix} x-a_1 & 0 & 0 & \cdots & 0 \\ 0 & x-a_2 & 0 & \cdots & 0 \\ 0 & 0 & x-a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x-a_n \\ \end{vmatrix} \\ &= \prod_{i=1}^{n}(x-a_i) \end{align}
  • (1)は1行目にn+1行目x(-1)を加える.ii行目にn+1x(-1)を加える.2in2 \le i \le n
  • (2)はn+1n+1列目で余因子展開をした.
  • (3)は対角行列式を展開し,整理した.